Flash-based Database Cache

Sang-Won Lee (swlee@skku.edu)

NVRAMOS 2012 Fall

Outline

- Introduction
- Related work
- Flash as Cache Extension (FaCE)
 - Design choice
 - Two optimizations
- Recovery in FaCE
- Performance Evaluation
- Conclusion

Introduction

- Flash Memory Solid State Drive(SSD)
 - NAND flash memory based nonvolatile storage

- No mechanical parts
 - Low access latency and High random IOPS
- Multi-channel and multi-plane
 - Intrinsic parallelism, high concurrency
- No overwriting
 - Erase-before-overwriting
 - Read cost << Write cost

Introduction(2)

- IOPS (IOs Per Second) matters in OLTP
- IOPS/\$: SSDs >> HDDs
 - e.g. SSD 63 (= 28,495 IOPS / 450\$) vs. HDD 1.7 (= 409 IOPS / 240\$)
- GB/\$: HDDs >> SSDs
 - e.g. SSD 0.073 (= 32GB / 440\$) vs. HDD 0.617 (= 146.8GB / 240\$)
- Therefore, it is more sensible to use SSDs to supplement HDDs, rather than to replace them
 - SSDs as cache between RAM and HDDs
 - To provide both the performance of SSDs and the capacity of HDDs as little cost as possible

Introduction(3)

Oracle + Sun Flash Storage

Total cost: 49M \$

– Server HW: 5M \$

– Server SW: 18M \$

- Storage: 23M \$

• Sun Flash Array: 22M \$

• 720 2TB 7.2K HDD: 0.7M

– Client HW/SW: 1M \$

Others: 1.2M\$

- Implications
 - More vertical stacks (by SW venc
 - Harddisk vendors (e.g. Seagate)

ORACLE°	SPARC SuperCluster with T3-4 Servers				TPC-C 5.11.0 TPC-Pricing 1.5.0 Report Date December 2, 2010			
Total System Cost	TPC-C Throughput Price/Po			Price/Per	erformance		Availability Date	
\$30,528,863USD	30,249,688 tpmC \$1.01U		\$1.01US	SD/tpmC		June 1, 2011		
Database Server Processors/Cores/Threads		Database Operating Manager System			Other Software		Number of Users	
SPARC T3 1.65GHz 108 / 1,728 / 13,824	Release 2 With Applicati	Database 11g 2 Enterprise Ed. Oracle Real on Clusters and rtitioning		acle Solaris 10 09/10			S-R Tier 1 anet Web er	24,300,000
Clients	Database Nodes			5	Storage			
81 Sun Fire X4170M2 2.93GHz Intel Xeon X5670 HC 48GB Memory 2 146GB SAS disk	z Intel 670 HC lemory SAS disk 2 Sun F5100 Flash Arrays 5 2TB 7.2K RPM SAS 2 Sun F5100 Flash Arrays							
27 Sun SPARC T3-4 Servers 4 1.65GHz SPARC T3 512GB Memory 3 300GB 10K RPM SAS 4 8Gb/s FC HBA, 2 port 10GbE SFP+ 5RU High								
System Component	Each Server Node				Each Client			t
Processors/Cores/Threads and cache	4/64/512	2 SPARC T3 1.65GHz 6 MB L2 Cache		Iz 2	2/12/24		Xeon X56 B Smart C	
Onlory)		512GB (13.5TB Total)		tal)		48G	В	
Disk Controllers	4	8Gb/s FC HBA 2 Port		ort	1	8 po	rt Internal	SAS
OS Disks (each system)	3	300GB 10K RPM SAS		SAS	2	1460	GB 10K RI	PM SAS
External Storage (Equally visible to all T3- 4 Server nodes)	11,040 720	l l						
Total Storage		1.76PB						

Introduction(4)

- A few existing flash-based cache schemes
 - e.g. Oracle Exadata, IBM, MS
 - Pages cached in SSDs are overwritten; the write pattern in SSDs is random
- Write bandwidth disparity in SSDs
 - e.g. random write $(25MB/s = 6.314 \times 4KBs/s)$ vs. sequential write (243MB/s) vs.

	4KB Random Throughput (IOPS)		Sequential Ban	dwidth (MBPS)	Ratio Sequential/Random write
	Read	Write	Read	Write	
SSD mid A	28,495	6,314	251	243	9.85
SSD mid B	35,601	2,547	259	80	8.04
HDD Single	409	343	156	154	114.94
HDD Single (x8)	2,598	2,502	848	843	86.25

Introduction(5)

- FaCE (Flash as Cache Extension) main contributions
 - Write-optimized flash cache scheme: e.g. 3x higher throughput than the existing ones
 - Faster database recovery support by exploiting the non-volatile cache pages in SSDs for recovery: e.g. 4x faster recovery time

Related work

How to adopt SSDs in the DBMS area?

1. SSD as faster disk

- VLDB '08, Koltsidas et al., "Flashing up the Storage Layer"
- VLDB '09, Canim et al. "An Object Placement Advisor for DB2
 Using Solid State Storage"
- SIGMOD '08, Lee et al., "A Case for Flash Memory SSD in Enterprise Database Applications"

2. SSD as DRAM buffer extension

- VLDB '10, Canim et al., "SSD Bufferpool extensions for Database systems"
- SIGMOD '11, Do et al., "Turbocharging DBMS Buffer Pool Using SSDs"

Lazy Cleaning (LC) [SIGMOD'11]

- Cache on exit
- Write-back policy
- LRU-based SSD cache replacement policy
 - To incur almost random writes against SSD
- No efficient recovery mechanism provided

Contents

- Introduction
- Related work
- Flash as Cache Extension (FaCE)
 - Design choices
 - Two optimizations
- Recovery in FaCE
- Performance Evaluation
- Conclusion

FaCE: Design Choices

1. When to cache pages in SSD?

2. What pages to cache in SSD?

3. Sync policy b/w SSD and HDD

4. SSD Cache Replacement Policy

Design Choices: When/What/Sync Policy

- When : on entry vs. on exit
- What : clean vs. dirty vs. both
- Sync policy : write-thru vs. write-back

Design Choices: SSD Cache Replacement Policy

- What to do when a page is evicted from DRAM buffer and SSD cache is full
- LRU vs. FIFO (First-In-First-Out)
 - Write miss: LRU-based victim selection, write-back if dirty victim, and overwrite the old victim page with the new page being evicted

Write hit: overwrite the old copy in flash cache with the updated page being evicted

Design Choices: SSD Cache Replacement Policy

- LRU vs. FIFO (First-In-First-Out)
 - Victims are chosen from the rear end of flash cache:
 "sequential writes" against SSD
 - Write hit : no additional action is taken in order not to incur random writes.

Write Reduction in mvFIFO

- Example
 - Reduce three writes to HDD t Multiple Versions of Page P

Design Choices: SSD Cache Replacement Policy

LRU vs. FIFO

LRU	FIFO

- Trade-off : hit-ratio <> write performance
 - Write performance benefit by FIFO >> Performance gain from higher hit ratio by LRU

mvFIFO: Two Optimizations

- Group Replacement (GR)
 - Multiple pages are replaced in a group in order to exploit the internal parallelism in modern SSDs
 - Replacement depth is limited by parallelism size (channel * plane)
 - GR can improve SSD I/O throughput
- Group Second Chance (GSC)
 - GR + Second chance
 - if a victim candidate page is valid and referenced, will reenque the victim to SSD cache
 - A variant of "clock" replacement algorithm for the FaCE
 - GSC can achieve higher hit ratio and more write reductions

Group Replacement (GR)

- Single group read from SSD (64/128 pages)
- Batch random writes to HDD

Check valid and dirty flag

Single group write to SSD

Flash Cache becomes FULL

Group Second Chance (GSC)

 GR + Second Chance reference bit is ON Check reference bit, if true gave them **RAM** 2nd chance Flash Caches become **FULL** 2. Evict **RAM Buffer** Flash as Cache Extension (LRU) 1. Fetch on miss **HDD** 19

Contents

- Introduction
- Related work
- Flash as Cache Extension (FaCE)
 - Design choice
 - Two optimizations
- Recovery in FaCE
- Performance Evaluation
- Conclusion

Recovery Issues in SSD Cache

- With write-back sync policy, many recent copies of data pages are kept in SSD, not in HDD.
- Therefore, database in HDD is in an inconsistent state after system failure

Recovery Issues in SSD Cache

- With write-back sync policy, many recent copies of data pages are kept in SSD, not in HDD.
- Therefore, database in HDD is in an inconsistent state after system failure
- In this situation, one recovery approach with flash cache is to view database in harddisk as the only persistent DB [SIGMOD 11]

Periodically checkpoint updated pages from SSD cache as well as DRAM buffer to HDD

Recovery Issues in SSD Cache(2)

- Fortunately, because SSDs are non-volatile, pages cached in SSD are alive even after system failure.
- SSD mapping information has gone
- Two approaches for recovering metadata.
 - Rebuild lost metadata by scanning the whole pages cached in SSD (Naïve approach) Time-consuming scanning
 - Write metadata persistently whenever metadata is changed [DaMon 11]
 Run-time overhead for managing metadata persistently

Recovery in FaCE

- Metadata checkpointing
 - Because a data page entering SSD cache is written to the rear in chronological order, metadata can be written regularly in a single large segment

Contents

- Introduction
- Related work
- Flash as Cache Extension (FaCE)
 - Design choice
 - Two optimizations
- Recovery in FaCE
- Performance Evaluation
- Conclusion

Experimental Set-Up

- FaCE Implementation in PostgreSQL
 - 3 functions in buffer mgr. : bufferAlloc(), getFreeBuffer(), bufferSync()
 - 2 functions in bootstrap for recovery : startupXLOG(), initBufferPool()
- Experiment Setup
 - Centos Linux
 - Intel Core i7-860 2.8 GHz (quad core) and 4G DRAM
 - Disks: 8 RAIDed 15k rpm Seagate SAS HDDs (146.8GB)
 - SSD : Samsung MLC (256GB)
- Workloads
 - TPC-C with 500 warehouses (50GB) and 50 concurrent clients
 - BenchmarkSQL

Transaction Throughput

Hit Ratio, Write Reduction, and I/O Throughput

Hit Ratio, Write Reduction, and I/O Throughput

Write Reduction Ratio By Flash Cache

Hit Ratio, Write Reduction, and I/O Throughput

Transaction Throughput

SLC SSD

More DRAM vs. More Flash

(Measured in	200MB DRAM or 2GB Flash						
tpmC)	x1	x2	х3	x4	x5		
More DRAM	2061	2353	2501	2705	2843		
More Flash	3681	4310	4830	5161	5570		

Table 5: More DRAM vs. More Flash

Scaling Up w/ More Disks

Recovery Performance

4.4x faster recovery than HDD only approach

Conclusion

- We presents a low-overhead caching method called FaCE that utilizes flash memory as an extension to a DRAM buffer for a recoverable database.
- FaCE by turning small random writes to large sequential ones
 - maximize the I/O throughput of a flash caching device
 - achieve scalable transaction throughput.
- FaCE takes advantage of the non-volatility of flash memory
 - to minimize the recovery overhead
 - accelerate the system restart from a failure.

Future Works

- Background flusher to harddisk
- Flash cache as A1-out storage for 2Q
- Flash cache aware RAM buffer replacement

QnA

Thank you! Any Question?